Summary of Global Risk Assessment Approaches for the Formaldehyde Science – General Approaches of the EU, Canada, WHO and the US

James S. Bus PhD DABT ATS

Exponent, Inc.

Formaldehyde Science Invited Experts Workshop:

Understanding Potential Human Health Cancer Risk – From Data Integration to Risk Evaluation

October 10-11, 2017, Chapel Hill, NC

EU – ECHA (2012) Hazard/Risk Classification

- Carc 1B (H350): "May cause cancer"; "limited" human (NPC only);
 "sufficient" animals (NPC);
- Muta 2 (H341): "suspected of causing genetic defects"
- "Suspected germ cell mutagen" due to site of contact DPX genotoxicity
- "No convincing evidence of a carcinogenic effect at distant sites or via routes of exposure other than inhalation."
- Mode of Action:
 - "Common understanding formaldehyde causes tumors above a threshold concentration by mechanisms that are initiated by the cytotoxic effects and secondarily regenerative cell proliferation", ...but
 - "...data does not allow firm conclusion on a threshold-mode of action"

WHO

- WHO/IPCS CICADS (Concise International Assessment Document; 2002)
 - Animal/human cancer: Only respiratory tract tumors fulfill causality criteria
 - Mode of Action: Carcinogenic hazard to humans "...under conditions that induce cytotoxicity and sustained proliferation."
 - Moderate to high confidence in data indicating an "obligatory role of regenerative proliferation" for nasal tumors, although mechanism is unclear.
- WHO IARC (2012)
 - Classification 1 "Carcinogenic to humans" "Sufficient" evidence in humans and animals (NPC); "small majority" for "sufficient" evidence of leukemias
 - Mode of Action: Cell replication in response to cytotoxicity promotes carcinogenicity; assumed genotoxic – "moderately supports" leukemias

Canada

- Priority Substances List Assessment Report (2001)
 - CEPA Schedule 1 "toxic"
 - DSL Low priority substance (already risk managed; risks below Canada population-level exposures)
 - Carcinogenic hazard to humans "...under conditions that induce cytotoxicity and sustained regenerative cell proliferation."
 - Genotoxicity cannot be excluded as contributing mechansism
- Health based guidance value (2004)
 - Predicted risk at chronic exposure to 1.2 ppb = 2.3 X 10⁻¹⁰

United States

- EPA IRIS, under revision
 - Sufficient evidence of causal association for NPC, all leukemias, myeloid leukemia and LHP as group in humans
 - Animals data provide strong support for NPC, but limited data for LHP cancers
 - For NPC, mutagenic MoA operating in conjunction with key event of formaldehyde cytotoxicity-induced cell proliferation
 - Lifetime cancer risk at 1 ppb = 1×10^{-4}
- NTP Report on Carcinogens (2011)
 - "Known to be a human carcinogen"
 - Sufficient evidence in humans: nasal and myeloid leukemias
 - Sufficient evidence in animals: multiple species, sites and routes
 - Mechanistic events plausible in humans, including genotoxicity

Occupational Exposure Assessments

- German MAK: 0.3 ppm TWA, momentary value of 1 ppm
 - Cancer classification 4: non-genotoxic; cell proliferation important to MoA
- SCOEL: 0.3 ppm TWA, 0.6 ppm STEL
 - Cancer classification Group C: genotoxic carcinogen with a MoA-based threshold
- ACGIH: 0.1 ppm TWA, 0.3 ppm STEL
 - Cancer classification A1: confirmed human carcinogen
- NIOSH: 0.016 ppm REL, 0.1 ppm STEL
 - Cancer classification: carcinogen
- OSHA: 0.75 ppm TWA, 2 ppm STEL
 - Cancer classification: potential to cause cancer

Mode of Action: Cytotoxicity causing regenerative cell proliferation in upper respiratory tract consistently identified

- Current MoA evaluations focused entirely on formaldehyde
- Little consideration of toxicity and carcinogenicity associated with chemicals extensively systemically metabolized to formaldehyde, and how such data might further inform the MoA
 - Methyl chloride
 - Weak male mouse carcinogen; non-carcinogen in rats
 - Liver, brain, and testis formaldehyde increased after inhalation exposure
 - Depletes glutathione, a key detoxification mechanism
 - Caffeine
 - Extensively demethylated to formaldehyde; daily 400 mg dose of caffeine liberates approximately 2 mmoles of formaldehyde (60 mg)